Parabolic Harnack inequality for time-dependent non-symmetric Dirichlet forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnack Inequality for Time-dependent Linearized Parabolic Monge-ampère Equation

We prove a Harnack inequality for nonnegative solutions of linearized parabolic Monge-Ampère equations −t φt − tr((Dφ)Du) = 0, in terms of a variant of parabolic sections associated with φ, where φ satisfies λ ≤ −φt detDφ ≤ Λ and C1 ≤ −φt ≤ C2.

متن کامل

A Harnack inequality for Dirichlet eigenvalues

We prove a Harnack inequality for Dirichlet eigenfunctions of abelian homogeneous graphs and their convex subgraphs. We derive lower bounds for Dirichlet eigenvalues using the Harnack inequality. We also consider a randomization problem in connection with combinatorial games using Dirichlet eigenvalues.

متن کامل

Non-symmetric Perturbations of Symmetric Dirichlet Forms

We provide a path-space integral representation of the semigroup associated with the quadratic form obtained by lower order perturbation of a symmetric local Dirichlet form. The representation is a combination of Feynman-Kac and Girsanov formulas, and extends previously known results in the framework of symmetric diffusion processes through the use of the Hardy class of smooth measures, which c...

متن کامل

Non-Symmetric Translation Invariant Dirichlet Forms

In order to treat certain "non-symmetric" potential theories, It6 I-4] and Bliedtner [1] have generalized Beurling and Deny's theory of Dirichlet spaces by replacing the inner product in the Dirichlet space with a bilinear form defined on a real, regular functional space. This bilinear form, called a Dirichlet form, is supposed to be continuous and coercive, and furthermore to satisfy a "contra...

متن کامل

Growth Theorems and Harnack Inequality for Second Order Parabolic Equations

A general approach to both divergence (D) and non-divergence (ND) second order parabolic equations is presented, which is based on three growth theorem. These growth theorems look identical in both cases (D) and (ND). They allow to prove the Harnack inequality and other related facts by general arguments, which do not depend on the structure (divergence or nondivergence) of equations. In turn, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2020

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2020.01.001